Cross Correlation in Phase Noise Analysis

Phase noise is a property of an oscillator that can extend in magnitude from the carrier of several volts down to a mere nano-volt far from the carrier. In many cases the lowest noise OCXOs, SAWs and other specialty oscillators have carrier to noise ratios in excess of -180 dBc/√Hz. The noise level of these oscillators often extends below that of even the mixers and low noise amplifiers at baseband. Cross correlation is a method used in phase noise analysis to extend the range of any single channel measurement by introducing a second channel and utilizing signal processing to locate the noise that is common to the DUT, yet uncommon to each individual channel. With this method, a typical noise floor improvement of 20 dB is very realistic, allowing for high accuracy measurements of extremely low noise oscillators. This article presents the mathematics with an example of how cross correlation can accurately identify signals or noise that is below the level of the measurement instrument.

Most phase noise measurement systems use what is called carrier cancellation. Phase noise is not measured directly, but down-converted to baseband. In an absolute phase noise measurement, where the absolute noise level of an oscillator is being measured, two oscillators are phase locked to one another. Once the two signals are locked with a mixer, the phase noise of both channels is down-converted directly to baseband without the carrier which is at DC and cancelled.

In a residual or additive phase noise measurement, whereby the additive noise of a component such as an amplifier is to be measured, the oscillator is split into two parts. One path drives the LO port of the mixer while the other path goes through the DUT prior to going into the RF port of the mixer. Within the noise level and isolation of the mixer, the carrier and its noise are canceled, being common between the two paths, while the noise of the DUT is measured directly at an offset and its carrier frequency centered at DC.

In both cases, low noise, low frequency techniques are then applied to amplify and sample this signal. However, in both cases, noise levels of system components may limit the measurement dynamic range or noise floor. In absolute measurements, the reference oscillator typically is the limitation. In additive measurements, even a very good mixer can often contribute as much noise as a low noise DUT.

Cross correlation has been used by NIST for metrology level phase noise measurements for quite some time (see the references for more information or go to www.nist.gov). Through-

Jason Breitbarth
Holzworth Instrumentation, Boulder, CO
General Purpose Amplifiers

*High gain and bandwidth
*Single power supply
*Low DC power consumption

Low Noise Amplifiers

*Broadband operation
*LNA with high P1 Option
*State-of-the-art Low Noise Performance

High Power Amplifier

*MMIC based compact design
*Watt level output power at millimeter wave
*Custom design

Full Band Amplifiers

*Full waveguide band LNA and PA
*Cover Ku & K, Ka, U, V, E, W bands
*Selection of various outlines

Contact us

Ducommun RF Product Group is an experienced designer and manufacturer of mmW amplifiers. Our facility offers standard and custom products covering the Ka to W Bands.

We feature amplifiers specifically for low noise applications, along with several interface options including waveguide and coax.

TABLE I

VOLTAGE NOISE IN TERMS OF Vrms/Hz AND dBV FOR VARIOUS RESISTANCES

<table>
<thead>
<tr>
<th>Resistance (Ω)</th>
<th>Voltage Noise @300kHz (91 nVrms/√Hz)</th>
<th>dBV (dBVrms/√Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.91</td>
<td>-160.8</td>
</tr>
<tr>
<td>100</td>
<td>1.29</td>
<td>-177.9</td>
</tr>
<tr>
<td>10K</td>
<td>4.07</td>
<td>-167.8</td>
</tr>
</tbody>
</table>

To evaluate whether a ‘real’ mixer could deal with this level of noise, we continue with the example. A 13 dBm high quality mixer phase detector may be driven around 5 dBm at the RF port. At this level, the mixer is slightly in compression with a conversion loss of likely about 7 dB. The output phase conversion may be Kp = 0.4 V/√Hz or about 0.252 Vrms/√Hz. With a 50 Ω resistor exhibiting about 0.9 Vrms/√Hz, this leaves a dynamic range of -170 dBc/Hz (about 10 dB below that of the oscillator). A higher power mixer can increase this dynamic range, but shot noise and other effects can become more dominant (such as the combined impedance of the mixer and the termination at the IF port).

In an absolute phase noise measurement, the reference oscillator will likely contribute significantly more noise than the mixer, especially close to the carrier. In an additive measurement such as a low noise, silicon BJT-based RF amplifier, the RF amplifier may have noise that is on par with the silicon diodes used in a good phase detector. In both examples, it is clear that low noise devices require additional techniques to accurately measure them down to very low levels.

CROSS CORRELATION

A diagram of a two-channel cross-correlation system to measure noise or very small signals is shown in Figure 1. Signal S0 is common while each individual channel has its own independent and uncorrelated noise sources.

![Fig. 1 Block diagram of noise measurement system where one signal with noise is measured simultaneously by two channels with their own independent and uncorrelated noise sources.](image)

The actual measured signal from channels 1 and 2 are defined as

\[S_1 = S_0 + v_{n1}(t) \]
\[S_2 = S_0 + v_{n2}(t) \]

MATHEMATICAL DEFINITIONS

Cross correlation can be computed via convolution or as a Fourier trans-
form. In the case of spectral analysis, it is easiest to deal with the Fourier transform version. Cross correlation in the time domain is defined by convolution as

\[(S_1 * S_2) = S_1^*(-t) * S_2 \]

(5)

The star is representative of the mathematical function of convolution. The asterisk denotes the complex conjugates of signal \(S_1 \). Rewritten in terms of a Fourier transform, the Fourier transform of the cross correlation is the dot product of the complex conjugate of one Fourier transform to the other Fourier transform.

\[F[S_1] * F[S_2] = F[S_1^*] * F[S_2] \]

(6)

It is shown here that cross correlation makes use of the phase information relative to the two channels. Figure 2 is a phasor diagram of the magnitude and phase of the Fourier transform for a given frequency component. The red signal vector is the buried signal representative of \(S_0 \) while the gray vectors are the random contributions of the whole system noise levels, \(S_1 \) or \(S_2 \). The gray vectors are unique and uncorrelated for each channel for each measurement while the red vector is common. Figure 2 illustrates how a buried signal phasor relates to the overall random noise vectors. Two channels will measure the buried signal vector identically with uncorrelated and larger noise in sum with it. Vector averaging the dot product of the two channels (one as a complex conjugate) will reduce the uncorrelated noise proportional to the number of correlations. Vector averaging a number of cross correlations is known as ‘cross correlating’ with a number of correlations.

The dot product of one signal with the complex conjugate of another for two identical signals results in just the magnitude squared of either signal and is real, having a phase of zero. The dot product of the complex conjugate of one uncorrelated signal to another will be random in both magnitude and phase.

VECTOR AVERAGING THE CROSS CORRELATION

In a single channel magnitude only system, each frequency bin magnitude is summed and then divided by the number of measurements to achieve averaging. In a cross-correlation system, both the magnitude and phase, or real and imaginary parts of the dot product from the cross correlation are vector summed. The dot product of the random noise vectors will eventually achieve a vector sum of zero assuming they are truly random and uncorrelated. The dot product of the small common signal will be in phase and real and eventually be the only signal left.

Vector averaging yields a maximum improvement relative to the number of averages (N) in dB as \(5 \log_{10}(N) \). In other words, it takes an order of magnitude increase in measurements for every 5 dB improvement. Table 2 lists the improvement for a number of correlations.

TABLE II

<table>
<thead>
<tr>
<th>Correlations (N)</th>
<th>Noise Floor Improvement (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>1000</td>
<td>15</td>
</tr>
<tr>
<td>10000</td>
<td>20</td>
</tr>
</tbody>
</table>

EXAMPLE

To illustrate how cross correlation works, a mathematical equivalent of Figure 1 was defined in numerical computing software using the signals \(S_0, S_1 \) and \(S_2 \). \(S_0 \) represents a small-signal above a broadband low noise level equivalent to just over a 50 Ω noise floor. \(S_1 \) and \(S_2 \) contain noise components \(v_{n1} \) and \(v_{n2} \), respectively, with noise levels that are above that of the small-signal of \(S_0 \). The example demonstrates that a single channel system could never measure \(S_0 \), given
> Excellent gain flatness and noise figure
> Uncompromised input and output VSWR
> Very low power consumption
> Miniature size and removable connectors
> Drop-in package for MIC integration

\[\omega(n) = \frac{1}{2} \left(1 - \cos \left(\frac{2\pi n}{N - 1} \right) \right) \]

where N is the number of time domain samples. In this example we use 1024 points. Windowing of the ideal signal \(S_0 \) is shown in Figure 3. In a real (noisy) measurement system, with noise components \(v_{n1} \) and \(v_{n2} \) being greater than signal \(S_0 \), the actual measurement is going to look more like Figure 5. For comparison, Figure 5 shows the ideal \(S_0 \) superimposed with the measured system signal \(S_1 \).

At this point, the cross-correlation algorithm is applied to signals \(S_1 \) and \(S_2 \) with vector averaging (cross correlations) at 1, 100 and 10,000 for a maximum improvement of 0, 10 and 20 dB, respectively. Figures 6, 7 and 8 demonstrate the effectiveness of cross correlation for 1, 100 and 10k correlations, respectively. Each plot contains three curves. The blue curve is the noise levels of the receiver with resultant signal \(S_1 \).

The Hann window is defined as

\[\omega(n) = \frac{1}{2} \left(1 - \cos \left(\frac{2\pi n}{N - 1} \right) \right) \]

where \(\omega(n) \) is the Hann window filter to be applied to a 1024 point time domain sample.

\[\omega(n) = \frac{1}{2} \left(1 - \cos \left(\frac{2\pi n}{N - 1} \right) \right) \]

where \(\omega(n) \) is the Hann window filter to be applied to a 1024 point time domain sample.
ideal signal S_0, having the number of correlations equal to the number of averages. The red curve is the signal S_1 of the individual channel, having the number of correlations equal to the number of averages. The yellow curve is the resultant cross correlation after vector averaging the number of 'correlations'. The results are tabulated in Table 3, respective of the number of correlations.

CONCLUSION

Cross-correlation analysis trades measurement setup complexity and time for increased sensitivity. In situations such as measuring phase noise where hardware can limit the measurement sensitivity compared to the device under test, cross correlation may be applied to improve the sensitivity to acceptable levels. In cases where the measurement floor is still below the device under test, but very close, cross correlation will improve the overall accuracy of the measurement. For cross correlation to be most effective, each channel must be isolated as much as possible to reduce or eliminate common mode noise. Additionally, the lower the noise measurement capability of each individual channel, the fewer correlations will be required and the faster a measurement can occur. As shown in the example plots of Figures 6-8, cross correlation has the ability to pick up noise and small signals that are otherwise invisible to traditional measurement systems.

Table III

<table>
<thead>
<tr>
<th>XCORR</th>
<th>Input Noise (dBc/Hz)</th>
<th>LNA (dBV/Hz) Noise</th>
<th>Measured Noise (dBV/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-179</td>
<td>-167</td>
<td>-167</td>
</tr>
<tr>
<td>100</td>
<td>-179</td>
<td>-167</td>
<td>-176</td>
</tr>
<tr>
<td>10k</td>
<td>-179</td>
<td>-167</td>
<td>-178.5</td>
</tr>
</tbody>
</table>

References

MEASURE PHASE NOISE

It doesn’t have to be complicated.

- **CROSS CORRELATION**
- **FAST!** < 20 seconds, -180 dBc/Hz
- **INTUITIVE** : INTERACTIVE GUI
- **PREVIEW** : www.holzworth.com

holzworth

instrumentation

phone: +1.303.325.3473

www.holzworth.com